CAD Tools for Creating 3D Escher Tiles

Mark Howison

Graphics Lunch, UC Berkeley
February 26, 2009

Overview

<
<
<
<
<
<

214D Tilings

Incremental Delaunay Triangulation in Java
Mesh-Cutting Algorithm

Visual Debugging

3D Tilings

User Interface Issues

Introduction

» M.C. Escher popularized
intricately decorated
isohedral tilings

» Planar tilings can be
designed by hand, or with
available tools on the web

» Specialized CAD tools help ;
address the challenges of
tiling other 2-manifolds

» What are interesting tilings
of 3-space?

Tiling on 2-manifolds

In the plane On the sphere

In the
Poincaré disk

On a genus-3
“Tetrus” surface

27D Tilings

» Warm-up exercise before tackling full 3D
» Extruded 2D tilings form layers in 3-space

» Trivial case: extrude vertically, edit height field

Triangulation Library

» Need meshes for boundary representation of tiles

» Why implement another triangulation library?
Chose Java for ease of Ul development and portability

Could not find existing libraries native to Java

Using Triangle would require JNI or dumping/reading ASCII
Precise results are unnecessary

Limited by precision of Fused Deposition Machine

Don’t need optimizations for large meshes, but do need
support for frequent modifications

Opportunity to learn about data structures and algorithms
for triangulation

Delaunay Triangulation

» The circumcircle through any
triangle does not contain any other
vertices of the triangulation

» “Locally equiangular”: maximizes
the minimum of the six angles
within any two adjacent triangles

» Can use an in-circle test to determine
if a triangulation is Delaunay

» Can make a triangulation Delaunay
by flipping edges

Robustness

» Need reliable tests for determining if a vertex is:
Left/right of a line (orient)
Inside/outside the circumcircle of a face (in-circle)

» Exact arithmetic or adaptive precision arithmetic

Slow (exact) or complicated implementation
(adaptive precision)

Precision is not crucial for our application
» Snap to integer coordinates, use integer
arithmetic

Rotating/skewing/scaling the tile and computing
intersections is awkward

Modern processors are designed for flops

» Merge vertices that lie within an epsilon radius
Use an epsilon >> floating point round-off error

Can still have problems with vertices within <
epsilon of edges

Robust enough for our purposes (“quasi-robust” in
Shewchuk’s categorization)

Three Basic Types of Algorithms

» Divide-and-conquer (e.g., Shamos and Hoey)
Typically used to generate the Voronoi diagram

Can be modified to return the Delaunay triangulation, the
dual of the Voronoi diagram

» Sweepline (e.g., Fortune)

Moving “front” along an axis guarantees that circumcircles
behind the front can’t contain new vertices

» Incremental insertion (e.g., Lawson)

Performance is limited by how well you can locate which
triangle contains the insertion site

Many optimizations are available

Lawson’s Incremental Insertion Algorithm

» Nice properties
Maintains the integrity of the mesh after every vertex insertion
Easy to implement

» Basicidea
Locate triangle containing insertion site
Trisect the triangle; add all involved edges to a queue

Perform in-circle test on queue

If an edge fails the test, flip it and add its four neighbor edges back
onto the queue

Guaranteed to terminate: can show that circumradii are strictly
decreasing and there are only finitely many triangulations (Sibson)

» Issues
Locating insertion sites is the bottle-neck
How do you insert a site outside of the boundary?

10

Locating Insertion Sites

» Easy if you have a convex boundary: walk along the
triangles

» For non-convex boundaries, we load on-demand copies
of the neighboring tiles to fill concavities

» Heuristic:
use the last inserted
Site as the search
origin, since a designer
will often add vertices
in localized groups

11

Moving/Removing Interior Vertices

» Temporary holes arise: need polygon filling algorithm

» We use a naive 0(n?) algorithm for ease of
implementation
Recursively cuts off “ear” triangles
Small polygons, mostly convex: performance isn’t an issue

If performance were an issue, could use a smarter
“trapezoidal decomposition” algorithm

\"x\ f ___\.h-“' \"\\ 'I \
V% V%N
— .’:__- ..-\-...-""\-xglf-- ::r"l%:':_-———' II-‘_‘.:-..._......___xii.-"f___
N BN | N
/,' /'.Q‘J II. \\\ ', x

12

Moving/Removing Boundary Vertices

» Case 1: Move vertex along the boundary

Assign new vertex coordinates

» Case 2: Move vertex into the exterior
Assign new vertex coordinates
Remove attached non-boundary edges
Fill polygon left by removal

13

Moving/Removing Boundary Vertices (Cont’d)

» Case 3: Move vertex into the interior
Assign new vertex coordinates
Remove ...
attached non-boundary edges
edges that intersect adjacent boundary edges
any exterior edges and points

Fill polygon left by removal

14

Mesh-Cutting Algorithm

» For forming the bottom face of an offset 212D tile
» Given an underlying mesh and a “cookie-cutter” template
» Truncates the geometry of the underlying mesh to fit inside

15

Mesh-Cutting Algorithm (Cont’d)

1. Template offset is specified by user

2. Construct template as an empty
boundary “shell” with temporary
edges

Follow the template to identify
intersections with the underlying

mesh

Load underlying mesh copies on-
demand

Add fragments that lie inside the
template to a queue; check future
intersections against the fragment
queue

16

Mesh-Cutting Algorithm (Cont’d)

After finding all intersections,
add fragments as constraint
edges to the template shell

Perform a flood search to capture
the remaining geometry inside
the template

17

Visual Debugging

» Sophisticated algorithms are difficult to debug using
traditional text-based debuggers/methods

» Geometric/graphics algorithms offer the advantage of
visual debugging options

Animation and visualization help identify extreme, difficult,
or unexpected cases

Can isolate and visualize subtasks within the algorithm
» Implemented in Java2D by overriding the event-queue
repainting mechanism

Events can be inserted mid-algorithm to create visual
“breakpoints”

Events can specify which geometric features to highlight

18

3D Tilings

» Exploring two fundamental domains:

» #1: Truncated octahedron, derived from the body-centered
cubic lattice

3D Tilings

» Exploring two fundamental domains:

» #2: Rhombic dodecahedron, based on the densest sphere
packing

Overview of 3D Editing Interface
» Phasel:

Individual “panes” of the 3D tile can
be Delaunay triangulated

Vertices can be moved in 2D within
pane interior

Boundary vertices cannot be moved
yet, since this would create non-
planar panes

» Phase II:

All vertices can be moved in 3D:

Last selected point defines an axis
through the origin

Can move points parallel to axis or in
perpendicular plane

Local edits available by trisecting
faces, but no Delaunay guarantee

Limited “roll-back” to Phase I

21

User Interface Issues

» Occlusion is an obstacle to free-form editing of 3D tiles

22

Because of symmetry, edits in the current view will also
change opposite faces

Creating a convex feature (e.g. a fish fin) creates a
corresponding concave feature (e.g. eye socket) on the
opposite side

Dual cameras can show convex/concave pairings

User Interface Issues (Cont’d)

» 3D domains can be scaled/skewed and remain space-filling
» What is the easiest way to manipulate this affine transform?

Created a widget with 9 control points, each restricted to one
degree of freedom

Widget maintains same orientation as camera

B Adjust Skew M=

23

User Interface Issues (Cont’d)

» 3D tilings can have complicated interlocking features

» Nearest neighbors can be scaled/translated to reveal
the interface between adjoining tiles

/
. Display Neighbors El@lgl

Scaled to 85%
+ translated 0.6
tile lengths away

Scaled to 85%

24

Conclusion

» Developed a CAD tool for designing layered 274D tiles

Can draw on an existing “vocabulary” of 2D tilings from Escher’s
sketchbook

» 3D cubic lattice tiles are more difficult to design

The entire editable surface is constrained to fit seamlessly with
adjacent tiles

In the 2D case, only the 1D border is subject to symmetry constraints, while
the interior can be decorated freely

There is no Escher sketchbook for 3D

» Addressed several Ul issues in our prototype 3D tool
Two-stage editing allows for Delaunay triangulation
Dual cameras reveal occluded features
Widget for controlling skew enables high-level editing operations
Interactive display of nearest neighbors shows how tiles interlock

» Will address future Ul issues as we try to create attractive 3D
tiles!

25

